Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
1.
Nano Lett ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721805

RESUMO

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

2.
J Phys Chem Lett ; : 5137-5142, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709498

RESUMO

The Brust-Schiffrin (BS) method for gold nanoparticle (Au NP) synthesis is celebrated for its ability to produce highly monodisperse NPs from toluene-water solutions, in contrast to aqueous methods, such as the Turkevich method. Despite the method's success, the actual formation mechanisms remain largely unknown due to difficulty in studying the intermediates with species-differentiating techniques such as mass spectrometry (MS) or nuclear magnetic resonance (NMR). The issue lies in the use of solvents poorly compatible with these techniques and the difficulty in differentiating useful intermediate species from side products and impurities in such one-pot reactions. Herein, we use our recently formulated fully aqueous BS reaction to study the formation mechanisms. MS is chiefly employed to capture the intermediate species, and the Au25(SR)18 nanocluster is used as a thermodynamically reliable end-point. We find that the BS method may comprise a unilateral complex-shedding stage in addition to the known thiol-etching stage.

3.
Adv Physiol Educ ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695081

RESUMO

OBJECTIVE: It is essential for modern medical students to continuously enhance their clinical thinking abilities. This study aims to evaluate the efficacy of the combined World Café discussion and case-based learning (CBL) approach within the clinical thinking training course. METHODS: The clinical thinking training course incorporated the combined World Café discussion and CBL approach. The assessment of the accuracy and rationality of clinical symptoms, medical examination, pathological processes, diagnostic results, diagnostic basis, and drug use was conducted through case-related queries. Feedback from students and instructors regarding the teaching content, teaching process, and teaching effect was gathered through questionnaires. RESULTS: The findings indicate that the students achieved high marks in all assessed areas, including clinical symptoms, medical examination, pathological processes, diagnostic results, diagnostic basis, and drug use. The feedback from students and instructors on the teaching content, teaching process, and teaching effect was positive. CONCLUSION: Medical educators can use our findings to implement the combined World Café discussion and CBL mode to enhance student engagement.

4.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675618

RESUMO

Mycobacterium tuberculosis (Mtb) is one of the major causes of human death. In its battle with humans, Mtb has fully adapted to its host and developed ways to evade the immune system. At the same time, the human immune system has developed ways to respond to Mtb. The immune system responds to viral and bacterial infections through a variety of mechanisms, one of which is alternative splicing. In this study, we summarized the overall changes in alternative splicing of the transcriptome after macrophages were infected with Mtb. We found that after infection with Mtb, cells undergo changes, including (1) directly reducing the expression of splicing factors, which affects the regulation of gene expression, (2) altering the original function of proteins through splicing, which can involve gene truncation or changes in protein domains, and (3) expressing unique isoforms that may contribute to the identification and development of tuberculosis biomarkers. Moreover, alternative splicing regulation of immune-related genes, such as IL-4, IL-7, IL-7R, and IL-12R, may be an important factor affecting the activation or dormancy state of Mtb. These will help to fully understand the immune response to Mtb infection, which is crucial for the development of tuberculosis biomarkers and new drug targets.


Assuntos
Processamento Alternativo , Macrófagos , Mycobacterium tuberculosis , RNA Mensageiro , Tuberculose , Mycobacterium tuberculosis/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/imunologia , Tuberculose/genética , Tuberculose/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Interleucina-4/genética , Interleucina-4/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
5.
J Am Chem Soc ; 146(17): 11773-11781, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648616

RESUMO

Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.

6.
Food Chem Toxicol ; 188: 114668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641044

RESUMO

The safety of propylene glycol (PG) and vegetable glycerin (VG) as solvents in electronic cigarette liquid has received increasing attention and discussion. However, the conclusions derived from toxicity assessments conducted through animal experiments and traditional in vitro methodologies have consistently been contentious. This study constructed an original real-time aerosol exposure system, centered around a self-designed microfluidic bionic-lung chip, to assess the biological effects following exposure to aerosols from different solvents (PG, PG/VG mixture alone and PG/VG mixture in combination with nicotine) on BEAS-2B cells. The study aimed to investigate the impact of aerosols from different solvents on gene expression profiles, intracellular biomarkers (i.e., reactive oxygen species content, nitric oxide content, and caspase-3/7 activity), and extracellular biomarkers (i.e., IL-6, IL-8, TNF-α, and malondialdehyde) of BEAS-2B cells on-chip. Transcriptome analyses suggest that ribosomal function could serve as a potential target for the impact of aerosols derived from various solvents on the biological responses of BEAS-2B cells on-chip. And the results showed that aerosols of PG/VG mixtures had significantly less effect on intracellular and extracellular biomarkers in BEAS-2B cells than aerosols of PG, whereas increasing nicotine levels might elevate these effects of aerosol from PG/VG mixture.


Assuntos
Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Solventes , Humanos , Solventes/toxicidade , Solventes/química , Linhagem Celular , Propilenoglicol/toxicidade , Glicerol/toxicidade , Glicerol/química , Dispositivos Lab-On-A-Chip , Espécies Reativas de Oxigênio/metabolismo , Nicotina/toxicidade , Biomarcadores/metabolismo
7.
Heliyon ; 10(5): e27400, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495141

RESUMO

Mycobacterium tuberculosis (M. tuberculosis) is the pathogen of human tuberculosis (TB). Resistance to numerous in vivo stresses, including oxidative stress, is determinant for M. tuberculosis intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. M. tuberculosis Rv2617c has been associated with oxidative stress response when interacting with other proteins in M. tuberculosis; however, its functional promiscuity and underlying molecular mechanisms remain elusive. In this study, we investigated the phenotypic changes of Mycobacterium smegmatis (M. smegmatis) expressing Rv2617c (Ms_Rv2617c) and its behavior in the presence of various in vitro stresses and phage infections. We found that Rv2617c conferred resistance to SDS and diamide while sensitizing M. smegmatis to oxidative stress (H2O2) and altered mycobacterial phenotypic properties (single-cell clone and motility), suggestive of reprogrammed mycobacterial cell wall lipid contents exemplified by increased cell wall permeability. Interestingly, we also found that Rv2617c promoted M. smegmatis resistance to infection by phages (SWU1, SWU2, D29, and TM4) and kept phage TM4 from destroying mycobacterial biofilms. Our findings provide new insights into the role of Rv2617c in resistance to oxide and acid stresses and report for the first time on its role in phage resistance in Mycobacterium.

8.
Adv Mater ; : e2401002, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521974

RESUMO

Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.

9.
Anal Chim Acta ; 1300: 342446, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521574

RESUMO

BACKGROUND: In vitro toxicity assessment studies with various experimental models and exposure modalities frequently generate diverse outcomes. In the prevalent experimental, aerosol pollutants are dissolved in culture medium through capture for exposure to two-dimensional planar cellular models in multiwell plates via immersion. However, this approach can generate restricted and inconclusive experimental data, significantly constraining the applicability of risk assessment outcomes. Herein, the in vitro cocultivation of lung epithelial and/or vascular endothelial cells was performed using self-designed bionic-lung microfluidic chip housing a gas-concentration gradient generator (GCGG) unit. Exposure experiments involving a concentration gradient of cigarette smoke (CS) aerosol were then conducted through an original assembled real-time aerosol exposure system. RESULTS: Transcriptomic analysis revealed a potential involvement of the cGMP-signaling pathway following online CS aerosol exposure on different cell culture models. Furthermore, distinct responses to different concentrations of CS aerosol exposure on different culture models were highlighted by detecting inflammation- and oxidative stress-related biomarkers (i.e., cell viability, reactive oxygen species, nitric oxide, IL-6, IL-8, TNF-α, GM-CSF, malondialdehyde, and superoxide dismutase). SIGNIFICANT: The results underscore the importance of improving chip biomimicry while addressing multi-throughput demands, given the substantial influence of the coculture model on cellular responses triggered by CS. Furthermore, the coculture model exhibited a mutually beneficial protective effect on cells at low CS concentrations within the GCGG unit, yet revealed a mutually amplified damaging effect at higher CS concentrations in contrast to the monoculture model.


Assuntos
Fumar Cigarros , Microfluídica , Técnicas de Cocultura , Células Endoteliais , Biônica , Pulmão , Nicotiana , Aerossóis
10.
J Am Chem Soc ; 146(12): 8706-8715, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487838

RESUMO

Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.

11.
Free Radic Biol Med ; 216: 60-77, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479634

RESUMO

Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.


Assuntos
Desoxiadenosinas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neuroinflamatórias , Proteômica , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos
12.
Anal Methods ; 16(14): 2111-2119, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516815

RESUMO

Microfluidic-based assessment platforms have recently attracted considerable attention and have been widely used for evaluating in vitro toxic effects. In the present study, we developed an original real-time aerosol exposure system, which focused on a self-designed microfluidic chip, in order to evaluate the toxicological effects following exposure to inhalable aerosols. The three-layer structured microfluidic chip enables real-time aerosol exposure at the gas-liquid interface. The comprehensive detection of toxic effect biomarkers based on this assessment platform encompasses transcriptomics, in situ fluorescence detection, and the identification of extracellular secretagogues. Correspondingly, the effects of selected inhalable aerosols such as cigarette smoke (CS), heated tobacco product smoke (HS), and electronic cigarette smoke (ES) on gene expression profiles, cell viability, intracellular biomarkers (reactive oxygen species and nitric oxide), apoptosis (caspase-3/7 activity), and extracellular biomarkers (IL-8, IL-1ß, TNF-α, and malondialdehyde) in the BEAS-2B cells present on the chip were investigated. Following exposure to aerosols derived from CS, HS, and ES, the transcriptome analysis revealed differential expression in these cells. In addition, the overlapping DEGs from the different treatment groups were found to be primarily associated with stimuli and inflammatory responses. Correspondingly, each of the three categories of selected inhalable aerosols was confirmed to induce significant changes in biomarkers that were associated with toxic effects. These results suggest that the original real-time aerosol exposure system centered around a self-designed chip can be applied to the toxic effect evaluation of inhalable aerosol exposure.


Assuntos
Aerossóis , Biomarcadores , Microfluídica , Poluição por Fumaça de Tabaco , Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco/efeitos adversos , Humanos , Linhagem Celular
14.
iScience ; 27(2): 108850, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303716

RESUMO

The biosilicification of diatoms allows for the customization of the synthesis of functionalized diatom frustules. The S active sites (-SH) on diatom frustules were created by adding the organic silicon sources tetramethoxysilane (TMOS) and (3-mercaptopropyl)trimethoxysilane (MPTMS). The mechanisms of adsorption-reduction and the indirect effects of S active sites on electrochemical performance were declared. The DBS@C-Ag-3 anode material sourced from the cultivation condition with a silicon source of TMOS:MPTMS = 3:1 shows the best comprehensive performance and delivers a discharge capacity of ∼660 mAh·g-1 after 1000 cycles at 1 A·g-1. The electrochemical performance of DBS@C-Ag anode materials is also found to be dominated by structure at high temperatures and conductivity at low temperatures. Such a diatom frustule structure with sulfhydryl functionalization is promising for anode materials, and it suggests a biological strategy for creating other electrode materials by modifying them with metals to improve electrochemical performances.

15.
Anal Chim Acta ; 1287: 342049, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182364

RESUMO

BACKGROUND: Typically, in vitro studies on the exposure of complex gaseous substances are performed in multi-well plate experiments by trapping and redissolving them, which could introduce potential bias into the results due to the use of inadequate trapping methods. Therefore, a more effective method is to expose complex gaseous substances in gaseous form online, such as using microfluidic chips in experiments. To address these challenges, we introduce a methodology that integrates a self-designed bionic-lung chip with transcriptome analysis to assess the impact of cigarette smoke (CS) exposure on changes in BEAS-2B cells cultured on-chip. RESULTS: After the microfluidic chip underwent online gas exposure, total RNA was extracted via in situ cell lysis, and RNA-Seq transcriptome analysis was conducted. And the RNA-Seq findings revealed the significant involvement of the MAPK signaling pathway associated with the inflammatory response in the cellular effects induced by CS exposure. Moreover, the validation of inflammatory response-related biomarkers through in situ fluorescence corroborated the outcomes of the transcriptome analysis. Besides, the experiment involving the inhibition of inflammation by DEX on the microfluidic chip provided additional confirmation of the previous experimental findings. SIGNIFICANT: In this study, we present an analytical strategy that combines microfluidic-based CS in situ exposure method with RNA-Seq technology. This strategy offers an experimental scheme for in situ exposure to complex gases, transcriptome analysis, and in situ fluorescence detection. Through the integration of the comprehensiveness of transcriptome analysis with the chip's direct and intuitive in situ fluorescence detection with the stability and reliability of RT-PCR and Western blot experiments, we have successfully addressed the challenges associated with in vitro risk assessment for online exposure to complex gaseous substances.


Assuntos
Fumar Cigarros , Humanos , Microfluídica , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Gases , Inflamação
17.
Front Chem ; 11: 1275478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937208

RESUMO

Introduction: The body's ability to metabolize nicotine and the disposition of nicotine in the brain are important determinants of its exposure. Limited knowledge about the near real-time changes of neurochemicals during the brain nicotine metabolic process hinders the recognition of its multiple neuropharmacological effects. Methods: An online microdialysis coupled with UHPLC-HRMS/MS method for the in vivo multi-analysis of nicotine metabolites and several neurotransmitters in rat brain was developed. Whether the systemic modulation of metabolic enzyme CYP2B would modulate nicotine pharmacokinetics and local neurochemical effects was further investigated. Results: The dynamic profiles of over 10 nicotine metabolites and neurotransmitters were simultaneously obtained after a single injection of nicotine (2 mg·kg-1, i.p.) using the new method. Proadifen pretreatment (50 mg·kg-1·d-1, i.p., 4 days) caused significant inhibition of brain CYP2B1 activity. When exposed to nicotine, the brain C max of nicotine was 1.26 times higher and the levels of nicotine metabolites, nornicotine, and nicotine-N-oxide, were decreased by 85.3% and 34.4% in proadifen-pretreated rats. The higher level of brain nicotine induced a greater release of dopamine, serotonin, glutamate, and γ-amino-butyric acid in the nucleus accumbens. The concentrations of nicotine and dopamine were positively correlated, and the average levels of γ-amino-butyric acid and serotonin were 2.7 and 1.2 times higher, respectively, under the inhibition of nicotine metabolism. Discussion: These results demonstrated that inhibiting nicotine metabolism in rats can enhance the residence of brain nicotine and its local neurotransmitter effects. The metabolic activity of nicotine under different physiological conditions could regulate nicotine's bioavailability and its resulting pharmacology.

18.
J Agric Food Chem ; 71(46): 17999-18009, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37904272

RESUMO

Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.


Assuntos
Estruturas Metalorgânicas , Ácidos Ftálicos , Quinolinas , Microextração em Fase Sólida/métodos , Estruturas Metalorgânicas/química , Ácidos Ftálicos/análise , Água/química , Ésteres/química
19.
Microb Ecol ; 86(4): 3043-3056, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831075

RESUMO

Recalcitrant dissolved organic carbon (RDOC) produced by microbial carbon pumps (MCPs) in the ocean is crucial for carbon sequestration and regulating climate change in the history of Earth. However, the importance of microbes on RDOC formation in terrestrial aquatic systems, such as rivers and lakes, remains to be determined. By integrating metagenomic (MG) and metatranscriptomic (MT) sequencing, we defined the microbial communities and their transcriptional activities in both water and silt of a typical karst river, the Lijiang River, in Southwest China. Betaproteobacteria predominated in water, serving as the most prevalent population remodeling components of dissolved organic carbon (DOC). Binning method recovered 45 metagenome-assembled genomes (MAGs) from water and silt. Functional annotation of MAGs showed Proteobacteria was less versatile in degrading complex carbon, though cellulose and chitin utilization genes were widespread in this phylum, whereas Bacteroidetes had high potential for the utilization of macro-molecular organic carbon. Metabolic remodeling revealed that increased shared metabolites within the bacterial community are associated with increased concentration of DOC, highlighting the significance of microbial cooperation during producing and remodeling of carbon components. Beta-oxidation, leucine degradation, and mevalonate (MVA) modules were significantly positively correlated with the concentration of RDOC. Blockage of the leucine degradation pathway in Limnohabitans and UBA4660-related MAGs were associated with decreased RDOC in the karst river, while the Fluviicola-related MAG containing a complete leucine degradation pathway was positively correlated with RDOC concentration. Collectively, our study revealed the linkage between bacteria metabolic processes and carbon sequestration. This provided novel insights into the microbial roles in karst-rivers carbon sink.


Assuntos
Sequestro de Carbono , Rios , Rios/química , Matéria Orgânica Dissolvida , Leucina/metabolismo , Multiômica , Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA